Page 16 - ePD04103_升科大四技數學B_課本PDF
P. 16
∵ AB的中點 M 坐標為 D =(2, 4),
3 1 4+0 AD = 2,AB = 34,BC =8 2,
( , )=( 2, 2 ),
2 2
CA = 34 AB = CA,
∴ M 與原點 (0,0)的距離為
∴△ABC為等腰三角形,
2 2 +2 =2 2
且周長為 2 34 + 8 2
A 5, 4 至 y 軸之距離 =| 5|=5
∵AB =8,BC =8 2,CA =8
A 8, 6 到 x 軸之距離 =| 6|=6
2
2
且 BC = AB + CA 2
AB = 10, BC =5 2, CA =5 2
∴△ABC為等腰直角三角形
∴△ABC的周長為
(A) AB =10,BC = 137,CA = 17
10 + 5 2+5 2=10 +10 2
2+6 5 3 (B) AB =3,BC =4,CA =5,
AB 的中點為 ( , )=(4,1)
2 2 2 2 2
AB + BC = CA
AB 的中線長 = 4 1 2 + 1+2 2 =3 2
(C)AB= 10,BC= 2,CA=2 2,
∵ P ( a, b )在 y 軸上,∴ a =0 P (0, b ), 2 2 2
AB =BC +CA
2
由 PA = PB PA = PB 2
(D) AB =5,BC =5 2,CA =5,
2
1+( b +5) =49+ ( b 7) 2 b =3 2 2 2
∴ a + b =0+3=3 AB + CA = BC
設 P 0, k 為 y 軸上一點,
∵ P a, b 在直線 L 上 2a b =3,
2
2
又PA = PB 則 PA + PB =4+ k 4 2 +9+ k 2 2
a 1 2 + b 3 2 = a 5 2 + b 3 2 =2 k 3 2 +15 15
a =3, b =3 ∴ ab =9 ∴當 k =3 P 0, 3 時
2 2
2 2 PA + PB 有最小值為 15
∵ OP = x + y , AP =( x +3) + y ,
2
2
2
2
2 承上題,當 P 點坐標為(0, 3)時,
2
BP = x +( y 5) 2
2 2
2
2
x + y = x +3 2 + y 2 PA + PB 才有最小值
∴OP = AP = BP
2
2
2
x + y = x + y 5 2
3 5
x = , y = , x + y =1
2 2
設△ABC的外心為O x, y ,
則OA = OB = OC
2
x + y 1 2 = x 1 2 + y 2
2
x + y 1 2 = x 2 2 + y 1 2
x =1, y =1
∴△ABC的外心為O 1, 1
AP = AQ
a +5 2 + 0 2 2 = a 3 2 + 0 8 2
11
a =
4
1-9.1