Page 5 - ePD13904_升科大四技數學C統測歷屆試題分章精解_課本PDF
P. 5
13 三角基本關係式
(1) 平方關係:(倒黑三角形)
sin θ ⎧ 2 cos θ + 2 = 1
⎪ 2 2
⎪
1 sec θ
⎨ tan θ +=
⎪ 1cot θ = 2 csc θ
+
2
⎪ ⎩
(2) 倒數關係:(對角線) (3) 商數關係:(相鄰函數)
sin ⋅ ⎧ θ csc = θ 1 sinθ cosθ
⎪ tanθ = ; cotθ =
cos ⋅ ⎨ θ sec = θ 1 cosθ sinθ
⎪
⎩ tan ⋅ θ cot = θ 1
1
θ
±
θ
※延伸關係式: (sinθ ± cos θ ) = 2 1 2sin cos ; tan + θ cotθ =
θ
sin cosθ
14 同界角
θ φ=± 360°× (n 為整數),θ 與 φ 為同界角
n
15 化非第一象限角為第一象限角
=
θ
(1) 90°+ : sin ( 90°+ θ ) cosθ ; cos ( 90°+ θ ) = − sinθ
tan ( 90°+ θ ) = − cotθ ; cot ( 90°+ θ ) = − tanθ
=
sec ( 90°+ θ ) = − cscθ ; csc ( 90°+ θ ) secθ
=
θ
(2) 180°− : sin (180°− θ ) sinθ ; cos (180°− θ ) = − cosθ
tan (180°− θ ) = − tanθ ; cot (180°− θ ) = − cotθ
=
sec (180°− θ ) = − secθ ; csc (180°− θ ) cscθ
θ
(3) 180°+ : sin (180°+ θ ) = − sinθ ; cos (180°+ θ ) = − cosθ
=
tan(180°+ θ ) = tanθ ; cot (180°+ θ ) cotθ
sec (180°+ θ ) = − secθ ; csc (180°+ θ ) = − cscθ
θ
(4) 270°− : sin ( 270°− θ ) = − cosθ ; cos ( 270°− θ ) = − sinθ
=
tan ( 270°− θ ) cotθ ; cot ( 270°− θ ) = tanθ
sec ( 270°− θ ) = − cscθ ; csc ( 270°− θ ) = − secθ
=
θ
(5) 270°+ : sin ( 270°+ θ ) = − cosθ ; cos ( 270°+ θ ) sinθ
tan ( 270°+ θ ) = − cotθ ; cot ( 270°+ θ ) = − tanθ
=
sec ( 270°+ θ ) cscθ ; csc ( 270°+ θ ) = − secθ
=
θ
(6) 360°− : sin ( 360°− θ ) = − sinθ ; cos ( 360°− θ ) cosθ
tan ( 360°− θ ) = − tanθ ; cot ( 360°− θ ) = − cotθ
=
sec ( 360°− θ ) secθ ; csc ( 360°− θ ) = − cscθ
iii